Multivariate Pattern Recognition in MSPC Using Bayesian Inference

نویسندگان

چکیده

Multivariate Statistical Process Control (MSPC) seeks to monitor several quality characteristics simultaneously. However, it has limitations derived from its inability identify the source of special variation in process. In this research, a proposed model that does not have limitation is presented. paper, data two scenarios were used: (A) created by simulation and (B) random variable obtained analysed product, which case corresponds cheese production slicing process dairy industry. The includes dimensional reduction procedure based on centrality dispersion. goal recognise multivariate pattern conjunction univariate variables with patterns so indicates pattern. consists stages. first stage concerned identification uses Moving Windows (MWs) for segmentation analysis. second Bayesian Inference techniques such as conditional probabilities Networks. By using these techniques, contributed found obtained. Furthermore, evaluates probability individual generating specific variable. This interpreted signal performance allows out-of-control state causes failure. efficiency results compared favourably respect Hotelling’s T2 chart, validates our model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)

فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...

15 صفحه اول

Invariant Pattern Recognition using Bayesian Inference on Hierarchical Sequences

Real world objects have persistent structure. However, as we move about in the world the spatio-temporal patterns coming from our sensory organs vary continuously. How the brain creates invariant representations from the always-changing input patterns is a major unanswered question. We propose that the neocortex solves the invariance problem by using a hierarchical structure. Each region in the...

متن کامل

Bayesian Inference for Ordinal Data Using Multivariate Probit Models

Multivariate ordinal data arise in many areas of applications. This paper proposes new efficient methodology for Bayesian inference for multivariate probit models using Markov chain Monte Carlo techniques. The key idea for our approach is the novel use of parameter expansion to sample correlation matrices. We also propose methodology for model selection. Our approach is demonstrated through sev...

متن کامل

Bayesian inference for multivariate copulas using pair-copula constructions

This article provides a Bayesian analysis of pair-copula constructions (Aas et al., 2007 Insurance Math. Econom.) for modeling multivariate dependence structures. These constructions are based on bivariate t−copulas as building blocks and can model the nature of extremal events in bivariate margins individually. According to recent empirical studies (Fischer et al. (2007) and Berg and Aas (2007...

متن کامل

Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning

Extracting patterns from data streams incrementally using bounded memory and bounded time is a difficult task. Traditional metrics for similarity search such as Euclidean distance solve the problem of difference in amplitudes between static time series prior to comparison by normalizing them. However, such a technique cannot be applied to data streams since the entire data is not available at a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9040306